
Charantonis Anastase Alexandre

Assistant Professon, ENSIIE

DEEP LEARNING

Deductive Reasoning

A → B → C

C → D

Associative reasoning

(A;D), (A;D), (A;D), (A;D)…

Artificial Intelligence: Emulating « Real » Intelligence

A → D

A → D

Reasoning / intelligence

 Antiquité: Talos

 Automate des échecs:

Le Turc Méchanique

W
ik

ip
e

d
ia

A history of AI

Tasks

Performance

Experience

Learning

Classification Regression

Renée Magrit
meteofrance.fr

Tasks

Classification

Image: Google Brain

Ancient idea(Palton)

Noticing that objects share
characteristics and clustering
them into groups

Basis of both mathematics and
language

When is a cat no longer a cat?

Survey of neural networks in autonomous driving
July 2017

Tasks

Regression

Le Juste Prix TF1

Monty Python’s Life of Brian, SONY Images

Calculate a precise output given a set of
inputs.

It is used for predictions:

From weather to stock market,
From insurance to energy needs,
From «likes» to votin intentions…

In nature things have a precise value…
But observations are uncertain.

How to proceed to know the actual,
precise value???

Tasks

• Task: Survival

• Performance:

 Minimization of pain,/

 Maximization of joy

• Experience:

 Personal + Transfert / Education

Humans as a learning machine

Questions:

a) How many of you have cheated at least

once during your studies?

b) How many of you dislike having to learn

a new programming language?

Underfitting, Generalization, Overfitting

It’s normal.

The cost of learning

Artificial Intelligence

Machine Learning

Deep

Learning

From AI to Deep Learning

1950: Turing Learning Machine

1957: Frank Rosenblatt invents the perceptron

Efficient heuristic to determine weights

1986: The process of backpropagation is described
by David Rumelhart, Geoff Hinton and Ronald J.
Williams.

A multi-layer

perceptron

1997: IBM Deep Blue Beats Kasparov

2012: AlexNet learns to recognise images on
ImageNet

2015: AlphaGo beat a human professional Go
player

2017: DeepStack wins professional poker
tournament

Google Dream

Convolutional Auto-

encoder

Google Dream

Convolutional Auto-

encoder

Convolutional Neural Networks

Learns a set of filters to apply on

images

Residual Neural Networks

Empyrical learning of differential equations

https://neurohive.io/en/popular-networks/resnet/

Adverserial Neural Networks

Inspired by game theory:

https://academy.zenva.com/product/deep-learning-mini-degree/?zva_src=youtube-deeplearning-MD

« Transfer Learning »

Problem:

 training a network is expensive (time, computations, data, expertise…)

Solution:

Use another already trained network and retool it to the new data / problem

Architecture

(with learnable

weights)

Observations Target

« Targets »:

𝐷𝑎𝑡𝑎 𝑖𝑛𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 (𝑒𝑖𝑡ℎ𝑒𝑟 𝑐𝑜𝑠𝑡𝑙𝑦 𝑡𝑜 𝑔𝑒𝑡, 𝑜𝑟 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒𝑓𝑢𝑡𝑢𝑟𝑒 𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑢𝑛𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒)

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑜𝑢 𝑜𝑡ℎ𝑒𝑟 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

Split your dataset in:

 Training: to learn the architecture’s weights

 (estimation through an iterative process)

 Test: to compare different architectures

 Validation: to ensure we are not overfitting

Avantages/ Inconveniants

Massively parallelisable

(Post-Dénard Era)

Great initial application cost but inexpensive application

Sensibility to missing data and definition of performance

Inability to predict situations/classes not present in training

Applications

Automatic driving (car / drones)

• Object detection and tracking,

• Trajectory predicition,

• Moral Choices…

Applications

Personal Assistants

Vocal → Texte$ →

Semantic

Applications

Personalised creation

A tailor made story!

Catégorisation of tastes

High level Semantic Generators

(scenarios), then cascade applications to

lower levels (dialogues etc)

Dangers

 Obsolescence of human labor →

Desanonymification of data

Création of algorithms that aim at « crashing » the economy

 Or to cheat other algorithms…

 A robot attempts a self-portrait, but lacks a mirror or self-awareness. ROBOTART

https://www.stockinvestor.com/39050/laughing-stock-market-crash/

Dangers

H. Kim et al., 2018

Deep

Fake

All is not catastrophic!

Deep Fusion

Machine Learning Basics

• TASK
Classification, Classification with missing inputs, Regression, Transcription,

Machine translation, Structured output, Anomaly detection, Synthesis and

sampling, Imputation of missing values, Denoising, Density estimation

• PERFORMANCE

• EXPERIENCE

Machine Learning Basics

• TASK

• PERFORMANCE
Numerical estimation of the accuracy, or equivalently the error rate of the

algorithm

Requires a separate data set, referred to as the Test set.

• EXPERIENCE

Machine Learning Basics

• TASK

• PERFORMANCE

• EXPERIENCE
Allowing the alogrithm to « experience » a dataset, progressively adapting

its parameters to improve its performance. This experience can be

supervised or unsupervised, providing it with extra external information

throughout its learning phase.

This phase of the algorithm learning and updating cycles:

 It calculates the output of the algorithm over a dataset,

 using the current parameters of the model.

 It evaluates the output given the performance metric.

 It updates the parameter values of the model.

 If a condition is met, it stops.

BASIC EXAMPLE: LINEAR REGRESSION

Dataset:

X, the explanatory variables

y, the target values

Task

Performance

Experience

Fundamental Concepts: Hyperparameters &Fitting

Underfitting Fit Overfitting

Fundamental Concepts: Hyperparameters &Fitting

BASIC EXAMPLE: PERCEPTRON

Dataset:

X, the explanatory variables

y, the target values

Task

Performance

Experience

BASIC EXAMPLE: PERCEPTRON

Dataset:

X, the explanatory variables

y, the target values

Task

Performance

Experience

BASIC EXAMPLE: PERCEPTRON

Definitions:

y=f(z) is the output from the perceptron for an input vector z

Dn is the training data-set consisting of n number pairs:

 {(X1 , trg1) … (Xi , trgi) … (Xn , trgn)}

Where Xi is the m-dimensional input vector

 Xi,j is the j-th element of the vector

 Xi,0 is considered to be 1

And trgi is the target value (0 or 1) for that input

Wj is the weight of the linear regression over the j-th element

Since it is an iterative algorithm, Wj (t) symbolizes the value of the weights at

iteration t. Initialise w to some values

Finally, h is the learning rate, be a small positive number (small steps lessen the
possibility of destroying correct classifications)

BASIC EXAMPLE: PERCEPTRON

1. Select random sample from training set as input

2. Calculate the output: yi(t) = f(W(t)*Xi)

3. If classification is incorrect, modify the weight vector w using:

 Wj (t+1) = Wj(t) - h * (trgi - yi(t)) * Xi,j

The perceptron is a linear classifier, therefore it will never get to the state

with all the input vectors classified correctly if the training set D is not linearly

separable, i.e. if the positive examples can not be separated from the

negative examples by a hyperplane.

In this case, no "approximate" solution will be gradually approached under

the standard learning algorithm, but instead learning will fail completely.

X0

X1

X2

X3

X4

L1

P0

L1

P1

𝑔(𝑤𝑖
𝐿1𝑃0𝑋𝑖)

4

𝑖=0

𝑔(𝑤𝑖
𝐿1𝑃1𝑋𝑖)

4

𝑖=0

Input Layer

L1

P0

L1

P1

Different Initializations

Multiples Perceptrons with same inputs, allow for

a “learnable” dissection of the input dimension.

Combining the outputs of

these perceptrons with other

perceptrons allows us to

medialize non-linear

processes by « linearizing»

them in a higher dimension.

BASIC EXAMPLE: MULTIPLE PERCEPTRON

X0

X1

X2

X3

X4

L1

P0

L1

P1

𝑔(𝑤𝑖
𝐿1𝑃0𝑋𝑖)

4

𝑖=0

𝑔(𝑤𝑖
𝐿1𝑃1𝑋𝑖)

4

𝑖=0

Input Layer

L1

P0

L1

P1

BASIC EXAMPLE: MULTIPLE PERCEPTRON

X0

X1

X2

X3

X4

Architecture:

a structure containing learnable

parameters (weights), +

modeling decisions exterior to

the training (Hyperparameters)

L1

P0

L1

P1

L1

P2

L1

P3

L1

P4

L1

P5

𝑔(𝑤𝑖
𝐿1𝑃0𝑋𝑖)

4

𝑖=0

𝑔(𝑤𝑖
𝐿1𝑃1𝑋𝑖)

4

𝑖=0

𝑔(𝑤𝑖
𝐿1𝑃2𝑋𝑖)

4

𝑖=0

𝑔(𝑤𝑖
𝐿1𝑃3𝑋𝑖)

4

𝑖=0

𝑔(𝑤𝑖
𝐿1𝑃4𝑋𝑖)

4

𝑖=0

𝑔(𝑤𝑖
𝐿1𝑃5𝑋𝑖)

4

𝑖=0

Layer 1

Input Layer

L1

P0

L1

P1

L1

P2

L1

P3

L1

P4

L1

P5

L2

P0

L2

P1

L2

P2

L3

P0

Layer 2

Output

Layer

Deep Learning:

Numerous Layers.

BASIC EXAMPLE: MULTIPLE PERCEPTRON

Activation Functions

Activation Function:

 takes the total input and produces an output for the node given some threshold.

BASIC EXAMPLE: PERCEPTRON

Others! (Logistic)

Activation Functions BASIC EXAMPLE: PERCEPTRON

XOR: Can it be solved?

DEEP LEARNING BASICS: MLP

DEEP LEARNING BASICS: MLP

in1

in2

h1

h2

out1

out2

DEEP LEARNING BASICS: MLP

in1

in2

h1

h2

out1

out2

Input Layer Hidden Layer Output Layer

DEEP LEARNING BASICS: MLP

in1

in2

h1

h2

out1

out2

1 1

Input Layer Hidden Layer Output Layer

Why ?

(hint: linear regression)

1

DEEP LEARNING BASICS: MLP

in1

in2

h1

h2

out1

out2

1 1

Input Layer Hidden Layer Output Layer

trg1

trg2

Example: 𝑖𝑛1 = 1; 𝑖𝑛2 = 2; 𝑡𝑟𝑔1 = 0.1; 𝑡𝑟𝑔2 = 0.7

DEEP LEARNING BASICS: MLP

in1

in2

h1

h2

out1

out2

1 1

w1

w5

w7

w11

Input Layer Hidden Layer Output Layer

trg1

trg2

Example: 𝑖𝑛1 = 1; 𝑖𝑛2 = 2; 𝑡𝑟𝑔1 = 0.1; 𝑡𝑟𝑔2 = 0.7

DEEP LEARNING BASICS: MLP

in1

in2

h1

1

w1
𝑛𝑒𝑡ℎ1 = 𝑖𝑛1 ∗ 𝑤1 + 𝑖𝑛2 ∗ 𝑤2 + 𝑤3

ℎ1 = 𝑎𝑓 𝑛𝑒𝑡ℎ1 =
= 𝑎𝑓(𝑖𝑛1 ∗ 𝑤1 + 𝑖𝑛2 ∗ 𝑤2 + 𝑤3)

DEEP LEARNING BASICS: MLP

in1

in2 h2

1

𝑛𝑒𝑡ℎ2 = 𝑖𝑛1 ∗ 𝑤4 + 𝑖𝑛2 ∗ 𝑤5 +𝑤6

ℎ2 = 𝑎𝑓 𝑛𝑒𝑡ℎ2 =
= 𝑎𝑓(𝑖𝑛1 ∗ 𝑤4 + 𝑖𝑛2 ∗ 𝑤5 + 𝑤6)

w5

DEEP LEARNING BASICS: MLP

in1

in2

h1

h2

1

w1

w5

𝑖𝑛1 = 1; 𝑖𝑛2 = 2;
𝑤1 = −1; 𝑤2 = −0.5;𝑤3 = 2.1;

𝑤4 = 1; 𝑤5 = 2;𝑤6 = −4;

And, in this layer, let a𝑓 𝑥 = 𝑅𝑒𝐿𝑢 𝑥 =
𝑥, 𝑖𝑓 𝑥 > 0;
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.

ℎ2 = 𝑎𝑓 𝑛𝑒𝑡ℎ2 =
= 𝑎𝑓(𝑖𝑛1 ∗ 𝑤4 + 𝑖𝑛2 ∗ 𝑤5 + 𝑤6)

ℎ1 = 𝑎𝑓 𝑛𝑒𝑡ℎ1 =
= 𝑎𝑓(𝑖𝑛1 ∗ 𝑤1 + 𝑖𝑛2 ∗ 𝑤2 + 𝑤3)

Calculate ℎ1 , ℎ2

DEEP LEARNING BASICS: MLP

in1

in2

h1

h2

out1

out2

1 1

w1

w5

w7

w11

ℎ1 = 0.1; ℎ2 = 1;
𝑤7 = 2; 𝑤8 = −0.4;𝑤9 = −0.3;
𝑤10 = −1; 𝑤11 = 1.5;𝑤12 = 0.6;

And, in this layer, let a𝑓 𝑥 =
1

1+𝑒−𝑥
 , the logistic function

𝑜𝑢𝑡1 = 𝑎𝑓 𝑛𝑒𝑡𝑜𝑢𝑡1 =
= 𝑎𝑓(ℎ1 ∗ 𝑤7 + ℎ2 ∗ 𝑤8 +𝑤9)

Calculate 𝑜𝑢𝑡1 , 𝑜𝑢𝑡2

𝑜𝑢𝑡2 = 𝑎𝑓 𝑛𝑒𝑡𝑜𝑢𝑡2 =
= 𝑎𝑓(ℎ1 ∗ 𝑤10 + ℎ2 ∗ 𝑤11 + 𝑤12)

DEEP LEARNING BASICS: MLP

𝑓 𝑥 =
1

1+𝑒−𝑥
 , logistic activation function

𝑓 0.5 = 0.62245 𝑓 3 = 0.95257

𝑓 −3 = 0.04742 𝑓 −0.5 = 0.37754

𝑓 2 = 0.88079

𝑓 1 = 0.73105

𝑓 −1 = 0.26894

𝑓 0 = 0.5

DEEP LEARNING BASICS: MLP

in1

in2

h1

h2

out1

out2

1 1

w1

w5

w7

w11

ℎ1 = 0.1; ℎ2 = 1;
𝑤7 = 2; 𝑤8 = −0.4;𝑤9 = −0.3;
𝑤10 = −1; 𝑤11 = 1.5;𝑤12 = 0.6;

And, in this layer, let a𝑓 𝑥 =
1

1+𝑒−𝑥
 , the logistic function

𝑜𝑢𝑡1 = 𝑎𝑓 𝑛𝑒𝑡𝑜𝑢𝑡1 =
= 𝑎𝑓(ℎ1 ∗ 𝑤7 + ℎ2 ∗ 𝑤8 +𝑤9)

Calculate 𝑜𝑢𝑡1 , 𝑜𝑢𝑡2 Tip: keep the values of 𝑛𝑒𝑡𝑜𝑢𝑡1 , 𝑛𝑒𝑡𝑜𝑢𝑡2

𝑜𝑢𝑡2 = 𝑎𝑓 𝑛𝑒𝑡𝑜𝑢𝑡2 =
= 𝑎𝑓(ℎ1 ∗ 𝑤10 + ℎ2 ∗ 𝑤11 + 𝑤12)

DEEP LEARNING BASICS: MLP

in1

in2

h1

h2

out1

out2

1 1

w1

w5

w7

w11

trg1

trg2

0.37754

0.88079

0.1

0.7

𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟: 𝐽 𝑤 =
1

2
 𝑜𝑢𝑡𝑖 − 𝑡𝑟𝑔𝑖

2
2

𝑖=1
=
𝐸1 + 𝐸2

2
= 0.05485

𝐸1=0.0770284516 𝐸2=0.0326850241

DEEP LEARNING BASICS: MLP

𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟: 0.05485

Backwards Pass

How much of the error is due to W7?

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑊7

= ?

Chain rule!

𝑑𝑓(𝑔 𝑥)

𝑑𝑥
=
𝑑𝑓(𝑔 𝑥)

𝑑(𝑔 𝑥)
∗
𝑑(𝑔 𝑥)

𝑑(𝑥)

Reminder: Derivatives

Calculate the rate of change

of a function based at any

given point on its curve

Here it is the rate the error

changes as a function of

each weight of the network

that interesses us.

DEEP LEARNING BASICS: MLP

𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟: 0.05485

Backwards Pass

How much of the error is due to W7?

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑊7

= ?

Chain rule!

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑊7

=
𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑜𝑢𝑡1

∗
𝜕𝑜𝑢𝑡1

𝜕𝑛𝑒𝑡𝑜𝑢𝑡1
∗
𝜕𝑛𝑒𝑡𝑜𝑢𝑡1
𝜕𝑊7

Next iteration 𝑊7𝑖𝑡1 = 𝑊7𝑖𝑡0 − 𝜂 ∗
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑊7
, with 𝜂 known as « learning rate »

Let’s get to some code: tinyurl.com/8js9m8mn

