DEEP LEARNING

Charantonis Anastase Alexandre
Assistant Professon, ENSIIE

Reasoning / intelligence

Deductive Reasoning

$$
\begin{aligned}
& A \rightarrow B \rightarrow C \\
& C \rightarrow D
\end{aligned}
$$

Associative reasoning (A;D), (A;D), (A;D), (A;D)...

$$
A \rightarrow D
$$

Artificial Intelligence: Emulating « Real » Intelligence

A history of AI

Antiquité: Talos

Automate des échecs:
Le Turc Méchanique

Learning

Tasks

Performance

 Experience
Tasks

Classification

Regression

meteofrance.fr

Tasks

Classification

Ancient idea(Palton)

Noticing that objects share characteristics and clustering them into groups

Basis of both mathematics and language

When is a cat no longer a cat?

Tasks

Regression

Le Juste Prix TF1

Monty Python's Life of Brian, SONY Images

Calculate a precise output given a set of inputs.

It is used for predictions:

From weather to stock market, From insurance to energy needs, From «likes» to votin intentions...

In nature things have a precise value... But observations are uncertain.
\downarrow
How to proceed to know the actual, precise value???

Humans as a learning machine

- Task: Survival
- Performance:

Minimization of pain,/
Maximization of joy

- Experience:

Personal + Transfert / Education

The cost of learning

Questions:
a) How many of you have cheated at least once during your studies?

Underfitting, Generalization, Overfitting

b) How many of you dislike having to learn a new programming language?

It's normal.

From Al to Deep Learning

1950: Turing Learning Machine

1957: Frank Rosenblatt invents the perceptron

inputs weights
If $w_{0}+w_{1} \times x_{1}+w_{2} \times x_{2}+\cdots+w_{n} \times x_{n}<0, \mathbf{y}=\mathbf{0}$ else $\mathbf{y}=1$

Efficient heuristic to determine weights

1986: The process of backpropagation is described by David Rumelhart, Geoff Hinton and Ronald J. Williams.

1997: IBM Deep Blue Beats Kasparov

2012: AlexNet learns to recognise images on ImageNet

1. ILSVRC-2012, 1.2 M img , 1000classes,top1(37.5\%) top5(17\%)
2. 2010 ILSVRC: 1.2 M train; 50 K val; 150 K test
3. nw: 60 M para, 650 k neurons, 5 conv $+3 \mathrm{fc}+$ softmax
4. Relu+GPU+lrn+overlap pooling+dropout
5. 2013, MNIST ER $<0.3 \%$
6. imageNet $=15 \mathrm{M}$ images +22 K cate (still overfitting)
7. faster GPU, bigger dataset, better architecture.
8. Nonlinearity: Relu faster learning than tanh. (6times), no saturating
9. GPU, read and write each other without CPU.M, vis.2.streams
10. Irn: aid generalisation. lateral inhibition. certain layers after relu.
11. overlap pooling: $s=2 z=3$, difficult to overfit
12. conv1-relu1-Irn1-pool1-conv2-relu2-lrn2-pool2-conv3-relu3-conv4 -relu4-conv5-relu5-pool5-fc6-relu6-fc7-relu7-softmax-prob-obj-error
13. conv2,conv4,conv5 connected only to input from same GPU conv3,fc, connected to all previous neurons
14. reduce overfitting: label-preserved image augmentation
15. image translation and flip, then crop 224×224
16. RGB intensity modification by PCA
17. Dropout: prob=0.5, dont FF nor FB, sp@different arch, no specific dep. learn robust conn to subset neurons .@2fc layers
18. Momentum SGD learning
19. Ir divide 10 , if stop improving validation error, 90 cycle 1.2 M images
20. results: ensemble, pretrain imageNet best
21. GPU1 orientation, GPU2 color-specific. every run
22. detect offcenter objects, top5 reasonable,pic ambiguity
23. rm single conv, degrade performance.
24. infers-temporal pathway
25. large+deep nw on video

2015: AlphaGo beat a human professional Go player

2017: DeepStack wins professional poker tournament

Deep Learning

Google Dream

Convolutional Autoencoder

Deep Learning

Google Dream

Convolutional Autoencoder

Convolutional Neural Networks

Learns a set of filters to apply on images

Recurent Neural Networks

Michel C. was born in Paris, France. He is married and has three children. He received a M.S. in neurosciences from the University Pierre \& Marie Curie and the Ecole Normale Supérieure in 1987, and and then spent most of his career in Switzerland, at the Ecole Polytechnique de Lausanne. He specialized in child and adolescent psychiatry and his first field of research was severe mood disorders in adolescent, topic of his PhD in neurosciences (2002). His mother tongue is ? ? ? ?

Residual Neural Networks

Empyrical learning of differential equations

Adverserial Neural Networks

Inspired by game theory:

police

« Transfer Learning »

Problem:
training a network is expensive (time, computations, data, expertise...)
Solution:
Use another already trained network and retool it to the new data / problem

model		Alex	VGG-16	GoogLeNet	NIN
conv	layer	5	13	21	12
	weights	3.8 M	15 M	5.8 M	7.6 M
	comp.	1.1 B	15.3 B	1.5 B	1.1 B
FC	layer	3	3	1	0
	weights	59 M	124 M	1 M	0
	comp.	59 M	124 M	1 M	0
TOTAL	weights	62 M	138 M	6.8 M	7.6 M
	comp.	1.1 B	15.5 B	1.5 B	1.1 B
ImageNet	top-5 err.	17.0%	7.3%	7.9%	10.9%

Machine Learning

« Targets»:
$\left\{\begin{array}{c}\text { Data inaccessible (either costly to get, or exists in thefuture or otherwise unmeasurable) } \\ \text { Clusters ou other representations of the data }\end{array}\right.$

Split your dataset in:
Training:
Test:
Validation:
to learn the architecture's weights (estimation through an iterative process)
to compare different architectures
to ensure we are not overfitting

Avantages/ Inconveniants

Massively parallelisable (Post-Dénard Era)

FIGURE A. 2 Floating-point application performance (SPECfp2000) over time (1985-2010).

Great initial application cost but inexpensive application
Sensibility to missing data and definition of performance
Inability to predict situations/classes not present in training

Applications

Automatic driving (car / drones)

- Object detection and tracking,
- Trajectory predicition,
- Moral Choices...

Applications

Personal Assistants

Hi, how can I help?

Vocal \rightarrow Texte $\$ \rightarrow$
Semantic

What can I help you with?

Applications

Personalised creation

Catégorisation of tastes
High level Semantic Generators
(scenarios), then cascade applications to lower levels (dialogues etc)

\downarrow
A tailor made story!

Dangers

Obsolescence of human labor \rightarrow

Desanonymification of data

A robot attempts a self-portrait, but lacks a mirror or self-awareness. ROBOTART

Création of algorithms that aim at « crashing » the economy

Or to cheat other algorithms...

Dangers

All is not catastrophic!

Machine Learning Basics

- TASK

Classification, Classification with missing inputs, Regression, Transcription, Machine translation, Structured output, Anomaly detection, Synthesis and sampling, Imputation of missing values, Denoising, Density estimation

- PERFORMANCE
- EXPERIENCE

Machine Learning Basics

- TASK
- PERFORMANCE

Numerical estimation of the accuracy, or equivalently the error rate of the algorithm
Requires a separate data set, referred to as the Test set.

- EXPERIENCE

Machine Learning Basics

- TASK
- PERFORMANCE
- EXPERIENCE

Allowing the alogrithm to « experience » a dataset, progressively adapting its parameters to improve its performance. This experience can be supervised or unsupervised, providing it with extra external information throughout its learning phase.

This phase of the algorithm learning and updating cycles:
It calculates the output of the algorithm over a dataset, using the current parameters of the model.
It evaluates the output given the performance metric. It updates the parameter values of the model.
If a condition is met, it stops.

BASIC EXAMPLE: LINEAR REGRESSION

Dataset:
X, the explanatory variables
y, the target values
Task
Performance
Experience

Fundamental Concepts: Hyperparameters \&Fitting

Underfitting

Degree 4
MSE $=4.32 \mathrm{e}-02(+/-7.08 \mathrm{e}-02)$

Fit

Degree 15

Overfitting

Fundamental Concepts: Hyperparameters \&Fitting

BASIC EXAMPLE: PERCEPTRON

Experience

BASIC EXAMPLE: PERCEPTRON

inputs weights
If $w_{0}+w_{1} \times x_{1}+w_{2} \times x_{2}+\cdots+w_{n} \times x_{n}<0, \mathbf{y}=\mathbf{0}$ else $\mathbf{y}=1$

BASIC EXAMPLE: PERCEPTRON

Definitions:
$y=f(z)$ is the output from the perceptron for an input vector z
D_{n} is the training data-set consisting of n number pairs:
$\left\{\left(X_{1}, \operatorname{trg}_{1}\right) \ldots\left(X_{i}, \operatorname{trg}_{i}\right) \ldots\left(X_{n}, \operatorname{trg}_{n}\right)\right\}$
Where $\quad X_{i}$ is the m-dimensional input vector
$X_{i, j}$ is the j-th element of the vector
$X_{i, 0}$ is considered to be 1
And $\quad \operatorname{trg}_{i}$ is the target value (0 or 1) for that input
W_{j} is the weight of the linear regression over the j-th element
Since it is an iterative algorithm, $\mathrm{W}_{\mathrm{j}}(\mathrm{t})$ symbolizes the value of the weights at iteration t. Initialise w to some values

Finally, η is the learning rate, be a small positive number (small steps lessen the possibility of destroying correct classifications)

BASIC EXAMPLE: PERCEPTRON

1. Select random sample from training set as input
2. Calculate the output: $y_{i}(t)=f\left(W(t) * X_{i}\right)$
3. If classification is incorrect, modify the weight vector w using:

$$
\mathrm{W}_{\mathrm{j}}(\mathrm{t}+1)=\mathrm{W}_{\mathrm{j}}(\mathrm{t})-\eta *\left(\operatorname{trg}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}(\mathrm{t})\right) * \mathrm{X}_{\mathrm{i}, \mathrm{j}}
$$

The perceptron is a linear classifier, therefore it will never get to the state with all the input vectors classified correctly if the training set D is not linearly separable, i.e. if the positive examples can not be separated from the negative examples by a hyperplane.
In this case, no "approximate" solution will be gradually approached under the standard learning algorithm, but instead learning will fail completely.

BASIC EXAMPLE: MULTIPLE PERCEPTRON

Input Layer

BASIC EXAMPLE: MULTIPLE PERCEPTRON

Input Layer

BASIC EXAMPLE: MULTIPLE PERCEPTRON

BASIC EXAMPLE: PERCEPTRON

Activation Function:

takes the total input and produces an output for the node given some threshold.

Others! (Logistic)

BASIC EXAMPLE: PERCEPTRON

XOR: Can it be solved?

DEEP LEARNING BASICS: MLP

Example: $i n_{1}=1 ; i n_{2}=2 ; \operatorname{trg}=0.1 ; \operatorname{trg} 2=0.7$

DEEP LEARNING BASICS: MLP

Example: $i n_{1}=1 ; i n_{2}=2 ; \operatorname{trg}=0.1 ; \operatorname{trg} 2=0.7$

DEEP LEARNING BASICS: MLP

$$
\begin{gathered}
\operatorname{net}_{h_{1}}=i n_{1} * w_{1}+i n_{2} * w_{2}+w_{3} \\
=a f\left(i n_{1} * w_{1}+i n_{2} * w_{2}+w_{3}\right)
\end{gathered}
$$

DEEP LEARNING BASICS: MLP

$$
\begin{gathered}
\operatorname{net}_{h_{2}}=i n_{1} * w_{4}+i n_{2} * w_{5}+w_{6} \\
=a f\left(i n_{1} * w_{4}+i n_{2} * w_{5}+w_{6}\right)
\end{gathered}
$$

N6

DEEP LEARNING BASICS: MLP

$$
\begin{gathered}
i n_{1}=1 ; i n_{2}=2 ; \\
w_{1}=-1 ; w_{2}=-0.5 ; w_{3}=2.1 ; \\
w_{4}=1 ; w_{5}=2 ; w_{6}=-4 ; \\
=a f\left(i n_{1} * w_{1}+i n_{2} * w_{2}+w_{3}\right) \\
h_{1}=a f\left(\text { net }_{h_{1}}\right)= \\
h_{2}=a f\left(\text { net }_{h_{2}}\right)= \\
=a f\left(i n_{1} * w_{4}+i n_{2} * w_{5}+w_{6}\right)
\end{gathered}
$$

N6

And, in this layer, let af(x) $=\operatorname{ReLu}(x)=\left\{\begin{array}{l}x, \text { if } x>0 ; \\ 0, \text { elsewhere } .\end{array}\right.$

Calculate h_{1}, h_{2}

DEEP LEARNING BASICS: MLP

Calculate out ${ }_{1}$, out ${ }_{2}$

DEEP LEARNING BASICS: MLP

$f(x)=\frac{1}{1+e^{-x}}$, logistic activation function

The standard logistic function has an easily calculated derivative:

$$
\begin{aligned}
& f(x)=\frac{1}{1+e^{-x}}=\frac{e^{x}}{1+e^{x}} \\
& \frac{d}{d x} f(x)=\frac{e^{x} \cdot\left(1+e^{x}\right)-e^{x} \cdot e^{x}}{\left(1+e^{x}\right)^{2}} \\
& \frac{d}{d x} f(x)=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}=f(x)(1-f(x))
\end{aligned}
$$

$f(0.5)=0.62245$

$$
f(1)=0.73105
$$

$$
f(3)=0.95257
$$

$$
f(0)=0.5 \quad f(2)=0.88079
$$

$$
f(-3)=0.04742
$$

$$
f(-1)=0.26894
$$

$$
f(-0.5)=0.37754
$$

DEEP LEARNING BASICS: MLP

DEEP LEARNING BASICS: MLP

Total Error: $J(\widetilde{w})=\frac{1}{2} \sum_{i=1}^{2}\left(\text { out }_{i}-\operatorname{trg}_{i}\right)^{2}=\frac{E_{1}+E_{2}}{2}=0.05485$
$E_{1}=0.0770284516$

$$
E_{2}=0.0326850241
$$

DEEP LEARNING BASICS: MLP

$$
\text { Total Error: } 0.05485
$$

Backwards Pass

How much of the error is due to W7?

$$
\frac{\partial E_{\text {total }}}{\partial W 7}=?
$$

Chain rule!

$$
\frac{d f(g(x))}{d x}=\frac{d f(g(x))}{d(g(x))} * \frac{d(g(x))}{d(x)}
$$

Reminder: Derivatives
Calculate the rate of change of a function based at any given point on its curve

Here it is the rate the error changes as a function of each weight of the network that interesses us.

DEEP LEARNING BASICS: MLP

$$
\text { Total Error: } 0.05485
$$

Backwards Pass

How much of the error is due to W7?

$$
\frac{\partial E_{\text {total }}}{\partial W 7}=?
$$

Chain rule!

$$
\frac{\partial E_{\text {total }}}{\partial W 7}=\frac{\partial E_{\text {total }}}{\partial o u t_{1}} * \frac{\partial o u t_{1}}{\partial n e t_{\text {out } 1}} * \frac{\partial n e t_{\text {out } 1}}{\partial W 7}
$$

Next iteration $W 7_{i t 1}=W 7_{i t 0}-\eta * \frac{\partial E_{\text {total }}}{\partial W 7}$, with η known as « learning rate »
Let's get to some code: tinyurl.com/8js9m8mn

