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DEEP LEARNING 



Deductive Reasoning 

A → B → C 

C → D  

 

Associative reasoning 

(A;D), (A;D), (A;D), (A;D)… 

 

 
Artificial Intelligence: Emulating « Real » Intelligence 

 

 

A → D 

A → D 

Reasoning / intelligence 



   Antiquité: Talos 

 

 

 

       

      Automate des échecs: 

Le Turc Méchanique 
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A history of AI 



Tasks 

 

Performance 

 

Experience 

Learning 



Classification Regression 

Renée Magrit 
meteofrance.fr 

Tasks 



Classification 

Image: Google Brain 

Ancient idea(Palton) 
 
Noticing that objects share 
characteristics and clustering 
them into groups 
 
Basis of both mathematics and 
language 
 
When is a cat no longer a cat? 

Survey of neural networks in autonomous driving 
July 2017 

Tasks 



Regression 

Le Juste Prix TF1 

Monty Python’s Life of Brian, SONY Images 

Calculate a precise output given a set of 
inputs. 
 
It is used for predictions: 
 
From weather to stock market, 
From insurance to energy needs, 
From «likes» to votin intentions… 
 
In nature things have a precise value… 
But observations are uncertain. 
 
 
How to proceed to know the actual, 
precise value??? 

Tasks 



• Task: Survival  

 

• Performance:  

 Minimization of pain,/    

 Maximization of joy 

 

• Experience:  

 Personal + Transfert / Education 

Humans as a learning machine 



Questions: 

a) How many of you have cheated at least 

once during your studies? 

 

  

b) How many of you dislike having to learn 

a new programming language? 

 

Underfitting, Generalization, Overfitting 

It’s normal. 

The cost of learning 



Artificial Intelligence 

Machine Learning 

Deep 

Learning 

From AI to Deep Learning 



1950: Turing Learning Machine 



1957: Frank Rosenblatt invents the perceptron 

Efficient heuristic to determine weights 



1986: The process of backpropagation is described 
by David Rumelhart, Geoff Hinton and Ronald J. 
Williams. 

A multi-layer 

perceptron 



1997: IBM Deep Blue Beats Kasparov 



2012: AlexNet learns to recognise images on 
ImageNet 



2015: AlphaGo beat a human professional Go 
player 



2017: DeepStack wins professional poker 
tournament 



Google Dream 

 

Convolutional Auto-

encoder 



Google Dream 

 

Convolutional Auto-

encoder 



Convolutional Neural Networks 

Learns a set of filters to apply on 

images 





Residual Neural Networks 

Empyrical learning of  differential equations 

 

 

https://neurohive.io/en/popular-networks/resnet/ 



Adverserial Neural Networks 

Inspired by game theory: 

 

 

 

https://academy.zenva.com/product/deep-learning-mini-degree/?zva_src=youtube-deeplearning-MD 



« Transfer Learning » 

Problem: 

 training a network is expensive (time, computations, data, expertise…) 

 

Solution: 

Use another already trained network and retool it to the new data / problem 

 

 

 



Architecture 

 

(with learnable 

weights) 

Observations Target 

« Targets »:  

𝐷𝑎𝑡𝑎 𝑖𝑛𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 (𝑒𝑖𝑡ℎ𝑒𝑟 𝑐𝑜𝑠𝑡𝑙𝑦 𝑡𝑜 𝑔𝑒𝑡, 𝑜𝑟 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒𝑓𝑢𝑡𝑢𝑟𝑒 𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑢𝑛𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒)

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑜𝑢 𝑜𝑡ℎ𝑒𝑟 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎
 

 

Split your dataset in:   

 Training:    to learn the architecture’s weights 

    (estimation through an iterative process) 

 Test:    to compare different architectures 

 Validation:    to ensure we are not overfitting 



Avantages/ Inconveniants 

Massively parallelisable 

( Post-Dénard Era) 

 

 

 

 

Great initial application cost but inexpensive application 

 

Sensibility to missing data and definition of performance 

 

Inability to predict situations/classes not present in training 



Applications 

Automatic driving (car / drones) 

• Object detection and tracking, 

• Trajectory predicition, 

• Moral Choices… 



Applications 

Personal Assistants 

Vocal → Texte$ → 

Semantic 

 

 



Applications 

Personalised creation 

A tailor made story! 

Catégorisation of tastes 

High level Semantic Generators 

(scenarios), then cascade applications to 

lower levels (dialogues etc) 



Dangers 

 Obsolescence of human labor → 

 

 

Desanonymification of data 

 

 

Création of algorithms that aim at « crashing » the economy 

 

 

 

 

 

 

 

 

 

 

 

      

     Or to cheat other algorithms… 

  A robot attempts a self-portrait, but lacks a mirror or self-awareness. ROBOTART  

https://www.stockinvestor.com/39050/laughing-stock-market-crash/ 



Dangers 

H. Kim et al., 2018 

Deep 

Fake 



All is not catastrophic! 

Deep Fusion 



Machine Learning Basics 

• TASK  
Classification, Classification with missing inputs, Regression, Transcription, 

Machine translation, Structured output, Anomaly detection, Synthesis and 

sampling, Imputation of missing values, Denoising, Density estimation 

 

• PERFORMANCE 

 

• EXPERIENCE 



Machine Learning Basics 

• TASK  

 

• PERFORMANCE 
Numerical estimation of the accuracy, or equivalently the error rate of the 

algorithm 

Requires a separate data set, referred to as the Test set. 

 

• EXPERIENCE 



Machine Learning Basics 

• TASK  

 

• PERFORMANCE 

 

• EXPERIENCE 
Allowing the alogrithm to « experience » a dataset, progressively adapting 

its parameters to improve its performance. This experience can be 

supervised or unsupervised, providing it with extra external information 

throughout its learning phase. 

 

This phase of the algorithm learning and updating cycles: 

  It calculates the output of the algorithm over a dataset, 

   using the current parameters of the model. 

  It evaluates the output given the performance metric. 

  It updates the parameter values of the model. 

  If a condition is met, it stops. 



BASIC EXAMPLE: LINEAR REGRESSION 

Dataset: 

 

X, the explanatory variables 

y, the target values 

 

 

Task 

 

Performance 

 

Experience 



Fundamental Concepts: Hyperparameters &Fitting 

Underfitting   Fit  Overfitting  



Fundamental Concepts: Hyperparameters &Fitting 



BASIC EXAMPLE: PERCEPTRON 

Dataset: 

 

X, the explanatory variables 

y, the target values 

 

 

Task 

 

Performance 

 

Experience 



BASIC EXAMPLE: PERCEPTRON 

Dataset: 

 

X, the explanatory variables 

y, the target values 

 

 

Task 

 

Performance 

 

Experience 



BASIC EXAMPLE: PERCEPTRON 

Definitions: 

 

y=f(z) is the output from the perceptron for an input vector z 

 

Dn is the training data-set consisting of  n number pairs: 

 {(X1 , trg1) … (Xi , trgi) … (Xn , trgn)} 

 

Where  Xi  is the m-dimensional input vector  

   Xi,j is the j-th element of the vector 

   Xi,0 is considered to be 1 

And  trgi   is the target value (0 or 1) for that input 

 

Wj is the weight of the linear regression over the j-th element 

 

Since it is an iterative algorithm, Wj (t) symbolizes the value of the weights at  

iteration t. Initialise w to some values 

Finally, h is the learning rate, be a small positive  number (small steps lessen the 
possibility of  destroying correct classifications) 

 



BASIC EXAMPLE: PERCEPTRON 

1. Select random sample from training set as input 

2. Calculate the output: yi(t) = f(W(t)*Xi) 

3. If classification is incorrect, modify the weight  vector w using: 

  Wj (t+1) = Wj(t) - h * (trgi - yi(t)) * Xi,j 

 

The perceptron is a linear classifier, therefore it will never get to the state 

with all the input vectors classified correctly if the training set D is not linearly 

separable, i.e. if the positive examples can not be separated from the 

negative examples by a hyperplane.  

In this case, no "approximate" solution will be gradually approached under 

the standard learning algorithm, but instead learning will fail completely. 



X0 

X1 

X2 

X3 

X4 

L1 

P0 

L1 

P1 

𝑔( 𝑤𝑖
𝐿1𝑃0𝑋𝑖)

4

𝑖=0

 

𝑔( 𝑤𝑖
𝐿1𝑃1𝑋𝑖)

4

𝑖=0

 

Input Layer 

L1 

P0 

L1 

P1 

Different Initializations 

Multiples Perceptrons with same inputs, allow for 

a “learnable” dissection of the input dimension. 

  

Combining the outputs of 

these perceptrons with other 

perceptrons allows us to 

medialize non-linear 

processes by « linearizing» 

them in a higher dimension. 

BASIC EXAMPLE: MULTIPLE PERCEPTRON 



X0 

X1 

X2 

X3 

X4 

L1 

P0 

L1 

P1 

𝑔( 𝑤𝑖
𝐿1𝑃0𝑋𝑖)

4

𝑖=0

 

𝑔( 𝑤𝑖
𝐿1𝑃1𝑋𝑖)

4

𝑖=0

 

Input Layer 

L1 

P0 

L1 

P1 

BASIC EXAMPLE: MULTIPLE PERCEPTRON 



X0 

X1 

X2 

X3 

X4 

Architecture:  

a structure containing learnable 

parameters (weights),  + 

modeling decisions exterior to 

the training (Hyperparameters) 

L1 

P0 

L1 

P1 

L1 

P2 

L1 

P3 

L1 

P4 

L1 

P5 

𝑔( 𝑤𝑖
𝐿1𝑃0𝑋𝑖)

4

𝑖=0

 

𝑔( 𝑤𝑖
𝐿1𝑃1𝑋𝑖)

4

𝑖=0

 

𝑔( 𝑤𝑖
𝐿1𝑃2𝑋𝑖)

4

𝑖=0

 

𝑔( 𝑤𝑖
𝐿1𝑃3𝑋𝑖)

4

𝑖=0

 

𝑔( 𝑤𝑖
𝐿1𝑃4𝑋𝑖)

4

𝑖=0

 

𝑔( 𝑤𝑖
𝐿1𝑃5𝑋𝑖)

4

𝑖=0

 

Layer 1 

Input Layer 

L1 

P0 

L1 

P1 

L1 

P2 

L1 

P3 

L1 

P4 

L1 

P5 

L2 

P0 

L2 

P1 

L2 

P2 

L3 

P0 

Layer 2 

Output 

Layer 

Deep Learning: 

Numerous Layers. 

BASIC EXAMPLE: MULTIPLE PERCEPTRON 



Activation Functions 

Activation Function:  

 takes the total input and produces an output for the node given some  threshold. 

BASIC EXAMPLE: PERCEPTRON 

Others! (Logistic)      



Activation Functions BASIC EXAMPLE: PERCEPTRON 

XOR: Can it be solved? 



DEEP LEARNING BASICS: MLP 



DEEP LEARNING BASICS: MLP 

in1 

in2 

h1 

h2 

out1 

out2 



DEEP LEARNING BASICS: MLP 

in1 

in2 

h1 

h2 

out1 

out2 

Input Layer Hidden Layer Output Layer 



DEEP LEARNING BASICS: MLP 

in1 

in2 

h1 

h2 

out1 

out2 

1 1 

Input Layer Hidden Layer Output Layer 

Why                ? 

 

(hint: linear regression) 

1 



DEEP LEARNING BASICS: MLP 

in1 

in2 

h1 

h2 

out1 

out2 

1 1 

Input Layer Hidden Layer Output Layer 

trg1 

trg2 

Example: 𝑖𝑛1 = 1; 𝑖𝑛2 = 2; 𝑡𝑟𝑔1 = 0.1; 𝑡𝑟𝑔2 = 0.7 
 
  



DEEP LEARNING BASICS: MLP 

in1 

in2 

h1 

h2 

out1 

out2 

1 1 

w1 

w5 

w7 

w11 

Input Layer Hidden Layer Output Layer 

trg1 

trg2 

Example: 𝑖𝑛1 = 1; 𝑖𝑛2 = 2; 𝑡𝑟𝑔1 = 0.1; 𝑡𝑟𝑔2 = 0.7 
 
  



DEEP LEARNING BASICS: MLP 

in1 

in2 

h1 

1 

w1 
𝑛𝑒𝑡ℎ1 = 𝑖𝑛1 ∗ 𝑤1 + 𝑖𝑛2 ∗ 𝑤2 + 𝑤3 

ℎ1 = 𝑎𝑓 𝑛𝑒𝑡ℎ1 = 
= 𝑎𝑓(𝑖𝑛1 ∗ 𝑤1 + 𝑖𝑛2 ∗ 𝑤2 + 𝑤3) 



DEEP LEARNING BASICS: MLP 

in1 

in2 h2 

1 

𝑛𝑒𝑡ℎ2 = 𝑖𝑛1 ∗ 𝑤4 + 𝑖𝑛2 ∗ 𝑤5 +𝑤6 

ℎ2 = 𝑎𝑓 𝑛𝑒𝑡ℎ2 = 
= 𝑎𝑓(𝑖𝑛1 ∗ 𝑤4 + 𝑖𝑛2 ∗ 𝑤5 + 𝑤6) 

w5 



DEEP LEARNING BASICS: MLP 

in1 

in2 

h1 

h2 

1 

w1 

w5 

𝑖𝑛1 = 1; 𝑖𝑛2 = 2; 
𝑤1 = −1; 𝑤2 = −0.5;𝑤3 = 2.1;  

𝑤4 = 1; 𝑤5 = 2;𝑤6 = −4; 

And, in this layer, let a𝑓 𝑥 = 𝑅𝑒𝐿𝑢 𝑥 =  
𝑥,  𝑖𝑓 𝑥 > 0;
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.

 

ℎ2 = 𝑎𝑓 𝑛𝑒𝑡ℎ2 = 
= 𝑎𝑓(𝑖𝑛1 ∗ 𝑤4 + 𝑖𝑛2 ∗ 𝑤5 + 𝑤6) 

ℎ1 = 𝑎𝑓 𝑛𝑒𝑡ℎ1 = 
= 𝑎𝑓(𝑖𝑛1 ∗ 𝑤1 + 𝑖𝑛2 ∗ 𝑤2 + 𝑤3) 

Calculate ℎ1 , ℎ2 



DEEP LEARNING BASICS: MLP 

in1 

in2 

h1 

h2 

out1 

out2 

1 1 

w1 

w5 

w7 

w11 

ℎ1 = 0.1; ℎ2 = 1; 
𝑤7 = 2; 𝑤8 = −0.4;𝑤9 = −0.3;  
𝑤10 = −1; 𝑤11 = 1.5;𝑤12 = 0.6; 

And, in this layer, let a𝑓 𝑥 =
1

1+𝑒−𝑥
 , the logistic function 

𝑜𝑢𝑡1 = 𝑎𝑓 𝑛𝑒𝑡𝑜𝑢𝑡1 = 
= 𝑎𝑓(ℎ1 ∗ 𝑤7 + ℎ2 ∗ 𝑤8 +𝑤9) 

Calculate 𝑜𝑢𝑡1 , 𝑜𝑢𝑡2 

𝑜𝑢𝑡2 = 𝑎𝑓 𝑛𝑒𝑡𝑜𝑢𝑡2 = 
= 𝑎𝑓(ℎ1 ∗ 𝑤10 + ℎ2 ∗ 𝑤11 + 𝑤12) 



DEEP LEARNING BASICS: MLP 

𝑓 𝑥 =
1

1+𝑒−𝑥
 , logistic activation function 

𝑓 0.5 = 0.62245 𝑓 3 = 0.95257 

𝑓 −3 = 0.04742 𝑓 −0.5 = 0.37754 

𝑓 2 = 0.88079 

𝑓 1 = 0.73105 

𝑓 −1 = 0.26894 

𝑓 0 = 0.5 



DEEP LEARNING BASICS: MLP 

in1 

in2 

h1 

h2 

out1 

out2 

1 1 

w1 

w5 

w7 

w11 

ℎ1 = 0.1; ℎ2 = 1; 
𝑤7 = 2; 𝑤8 = −0.4;𝑤9 = −0.3;  
𝑤10 = −1; 𝑤11 = 1.5;𝑤12 = 0.6; 

And, in this layer, let a𝑓 𝑥 =
1

1+𝑒−𝑥
 , the logistic function 

𝑜𝑢𝑡1 = 𝑎𝑓 𝑛𝑒𝑡𝑜𝑢𝑡1 = 
= 𝑎𝑓(ℎ1 ∗ 𝑤7 + ℎ2 ∗ 𝑤8 +𝑤9) 

Calculate 𝑜𝑢𝑡1 , 𝑜𝑢𝑡2 Tip: keep the values of 𝑛𝑒𝑡𝑜𝑢𝑡1 , 𝑛𝑒𝑡𝑜𝑢𝑡2  

𝑜𝑢𝑡2 = 𝑎𝑓 𝑛𝑒𝑡𝑜𝑢𝑡2 = 
= 𝑎𝑓(ℎ1 ∗ 𝑤10 + ℎ2 ∗ 𝑤11 + 𝑤12) 



DEEP LEARNING BASICS: MLP 

in1 

in2 

h1 

h2 

out1 

out2 

1 1 

w1 

w5 

w7 

w11 

trg1 

trg2 

0.37754 

0.88079 

0.1 

0.7 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟: 𝐽 𝑤 =
1

2
 𝑜𝑢𝑡𝑖 − 𝑡𝑟𝑔𝑖

2
2

𝑖=1
= 
𝐸1 + 𝐸2

2
= 0.05485 

𝐸1=0.0770284516 𝐸2=0.0326850241 



DEEP LEARNING BASICS: MLP 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟:  0.05485 

 

Backwards Pass 

 

How much of the error is due to W7? 

 
𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑊7

= ? 

 

Chain rule! 

 
𝑑𝑓(𝑔 𝑥 )

𝑑𝑥
=
𝑑𝑓(𝑔 𝑥 )

𝑑(𝑔 𝑥 )
∗
𝑑(𝑔 𝑥 )

𝑑(𝑥)
 

 
Reminder: Derivatives 

 

Calculate the rate of change 

of a function based at any  

given point on its curve 

 

Here it is the rate the error 

changes as a function of 

each weight of the network 

that interesses us. 



DEEP LEARNING BASICS: MLP 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟:  0.05485 

 

Backwards Pass 

 

How much of the error is due to W7? 

 
𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑊7

= ? 

 

Chain rule! 

 
𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑊7

=
𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑜𝑢𝑡1

∗
𝜕𝑜𝑢𝑡1

𝜕𝑛𝑒𝑡𝑜𝑢𝑡1
∗
𝜕𝑛𝑒𝑡𝑜𝑢𝑡1
𝜕𝑊7

 

 

 

Next iteration 𝑊7𝑖𝑡1 = 𝑊7𝑖𝑡0 − 𝜂 ∗
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑊7
, with 𝜂 known as « learning rate »  

 

Let’s get to some code: tinyurl.com/8js9m8mn 


